Yıl : 0 Cilt : 0 Sayı : 0

Tam Metin (PDF)

KÜRESEL COVID-19 SALGINININ DÜNYADA VE TÜRKİYE’DE DEĞİŞEN DURUMU VE KÜMELEME ANALİZİ

Open Access

Öz

Amaç: Bu çalışmanın amacı; küresel COVID-19 salgınının dünyada ve Türkiye’de değişen durumuna bağlı olarak ülkelere ait güncel COVID-19 verisine dayalı özet durum ve analiz sonuçlarına dinamik yapı kazandırılması, böylelikle hızlı ve proaktif kararlara destek verilebilmesidir. Bu kapsamda, COVID-19’u veriye dayalı olarak tanımlamak amacıyla öncelikle çevrimiçi bir R-Shiny uygulaması geliştirilmiştir (https://elifkartal.shinyapps.io/covid19/). Gereç ve Yöntem: Bu çalışmada yöntem olarak Veri Madenciliği için Çapraz Endüstri Standart Süreç Modeli (CRoss-Industry Standard Process for Data Mining - CRISP-DM) kullanılmıştır. Küresel ve ülkesel boyutta COVID-19’un değişen durumu değerlendirilmiştir. Doğrusal Değişim Oranı (DDO), Üstel Büyüme Katsayısı (ÜBK) ve vaka sayısının ikiye katlanması için gereken gün sayısı gibi yeni değişkenler hesaplanmıştır. Böylece, yeni değişkenlerle güçlendirilen veriye k-Ortalamalar veri madenciliği algoritması uygulanarak kümeleme analizi yapılmış ve ülkelerin benzerlikleri belirlenmiştir. Küme ortalamasına en yakın ülkeler küme merkezi olarak kabul edilmiş, aynı kümedeki ülkeler küme merkezine olan uzaklıklarına göre sıralanmıştır. Bulgular: Çalışmanın en önemli bulgularından biri ÜBK ve DDO eğilimlerinin aynı olmasıdır. Bu haliyle COVID-19’un salgın özelliği olarak kabul edilen üstel bir davranış göstermediği veya kontrol altına alınabildiği söylenebilecektir. Geliştirilen uygulamayla ülkelerin, coğrafi konumlarından bağımsız ve zamana göre dinamik bir biçimde, hangi kümede yer aldığı, aynı kümedeki ülkelerin olası risk durumları ve benzerlikleri daha hassas biçimde belirlenmiştir. Sonuç: Bu çalışma ve geliştirilen uygulama ile; küresel COVID-19 salgınının dünyada ve Türkiye’de değişen durumuna bağlı olarak ülkelere ait güncel COVID-19 verisine dayalı özet durum ve analiz sonuçlarına dinamik yapı kazandırılmış, böylelikle hızlı ve proaktif kararlara destek verilebilmesi sağlanmıştır.

Anahtar Kelimeler

COVID-19   Korona-virüsü   kümeleme   veri-madenciliği   tanımlayıcı-istatistik  

Sorumlu Yazar

Elif KARTAL

Kaynakça

  • 1. T.C Sağlık Bakanlığı. Yeni Korona Virüsü. 2020 [cited 2020 Jun 8]. Available from: https://covid19.saglik.gov.tr/
  • 2. Koca F. “Tedbirlere Uyum; Kendimize, Devletimize ve Milletimize Karşı Bir Ödevdir”. T.C. Saglik Bakanligi. 2020 [cited 2020 Jun 7]. https://www.saglik.gov.tr/TR,65876/ tedbirlere-uyum-kendimize-devletimize-ve-milletimizekarsi-bir-odevdir.html
  • 3. Özkan Y. Veri madenciliği yöntemleri. Papatya Yayıncılık Eğitim; 2008. 214 p.
  • 4. Silahtaroğlu G. Kavram ve Algoritmalarıyla Temel Veri Madenciliği. İstanbul: Papatya Yayıncılık Eğitim; 2008.
  • 5. Şentürk A. Veri Madenciliği Kavram ve Teknikler. Bursa: Ekin Yayınevi; 2006.
  • 6. Balaban ME, Kartal E. Veri Madenciliği ve Makine Öğrenmesi Temel Algoritmaları ve R Dili ile Uygulamaları. 2nd ed. Beyoğlu, İstanbul: Çağlayan Kitabevi; 2018.
  • 7. Shearer C. The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing. 2000;5(4):13-22.
  • 8. Euro
Daha Fazla Göster

Detaylar

DOI 10.26650/IUITFD.2020.0077

Submission : 12 Haz 2020

Early Viewed : 23 Tem 2020

Tam Metin (PDF)

CHANGING STATUS OF GLOBAL COVID-19 OUTBREAK IN THE WORLD AND IN TURKEY AND CLUSTERING ANALYSIS

Open Access

Öz

Objective: In this study, it is aimed to provide a dynamic structure to the summary status and analysis results based on the current COVID-19 data of the countries based on changing status of global COVID-19 outbreak in the world and in Turkey; thus, to support fast and proactive decisions. In this scope, to define COVID-19 based on data, an online R-Shiny application is developed (https://elifkartal.shinyapps.io/covid19/). Material and Method: In this study, CRoss-Industry Standard Process for Data Mining - CRISP-DM is used as the study method. The changing situation of COVID-19 in global and national dimensions was evaluated. New variables are calculated such as Linear Change Rate (LCR), Exponential Growth Coefficient (EGC), and required days to double cases. Cluster analysis was performed by applying the k-Means data mining algorithm to the data reinforced with the new variables and similarities of countries were determined. The countries closest to the cluster average are accepted as cluster centers and the countries in the same cluster are ranked according to their distance from the cluster center. Results: One of the most important findings of the study is that the trends of LCR and EGC are the same. As such, it can be said that COVID-19 does not display an exponential behavior or can be controlled. With the developed application, the countries in which the cluster is located, regardless of their geographical location and dynamically according to time, the possible risk situations and similarities of the countries in the same cluster have been determined more precisely. Conclusion: With this study and the application developed; depending on changing status of global COVID-19 outbreak in the world and in Turkey, a dynamic structure has been given to the summary status and analysis results based on the current COVID-19 data of the countries, thus, it has been provided to support fast and proactive decisions.

Anahtar Kelimeler

COVID-19   Corona-virus   clustering   data-mining   descriptive-statistics  

Sorumlu Yazar

Elif KARTAL

Kaynakça

  • 1. T.C Sağlık Bakanlığı. Yeni Korona Virüsü. 2020 [cited 2020 Jun 8]. Available from: https://covid19.saglik.gov.tr/
  • 2. Koca F. “Tedbirlere Uyum; Kendimize, Devletimize ve Milletimize Karşı Bir Ödevdir”. T.C. Saglik Bakanligi. 2020 [cited 2020 Jun 7]. https://www.saglik.gov.tr/TR,65876/ tedbirlere-uyum-kendimize-devletimize-ve-milletimizekarsi-bir-odevdir.html
  • 3. Özkan Y. Veri madenciliği yöntemleri. Papatya Yayıncılık Eğitim; 2008. 214 p.
  • 4. Silahtaroğlu G. Kavram ve Algoritmalarıyla Temel Veri Madenciliği. İstanbul: Papatya Yayıncılık Eğitim; 2008.
  • 5. Şentürk A. Veri Madenciliği Kavram ve Teknikler. Bursa: Ekin Yayınevi; 2006.
  • 6. Balaban ME, Kartal E. Veri Madenciliği ve Makine Öğrenmesi Temel Algoritmaları ve R Dili ile Uygulamaları. 2nd ed. Beyoğlu, İstanbul: Çağlayan Kitabevi; 2018.
  • 7. Shearer C. The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing. 2000;5(4):13-22.
  • 8. Euro
Daha Fazla Göster

Detaylar

DOI 10.26650/IUITFD.2020.0077

Submission : 12 Haz 2020

Early Viewed : 23 Tem 2020

Tam Metin (PDF)